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Abstract. A major goal of remote sensing is the development of generalizable algorithms
to repeatedly and accurately map ecosystem properties across space and time. Imaging
spectroscopy has great potential to map vegetation traits that cannot be retrieved from
broadband spectral data, but rarely have such methods been tested across broad regions. Here
we illustrate a general approach for estimating key foliar chemical and morphological traits
through space and time using NASA’s Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS-Classic). We apply partial least squares regression (PLSR) to data from 237 field
plots within 51 images acquired between 2008 and 2011. Using a series of 500 randomized 50/
50 subsets of the original data, we generated spatially explicit maps of seven traits (leaf mass
per area (Marea), percentage nitrogen, carbon, fiber, lignin, and cellulose, and isotopic nitrogen
concentration, d15N) as well as pixel-wise uncertainties in their estimates based on error
propagation in the analytical methods. Both Marea and %N PLSR models had a R2 . 0.85.
Root mean square errors (RMSEs) for both variables were less than 9% of the range of data.
Fiber and lignin were predicted with R2 . 0.65 and carbon and cellulose with R2 . 0.45.
Although R2 of %C and cellulose were lower than Marea and %N, the measured variability of
these constituents (especially %C) was also lower, and their RMSE values were beneath 12%
of the range in overall variability. Model performance for d15N was the lowest (R2 ¼ 0.48,
RMSE¼ 0.95%), but within 15% of the observed range. The resulting maps of chemical and
morphological traits, together with their overall uncertainties, represent a first-of-its-kind
approach for examining the spatiotemporal patterns of forest functioning and nutrient cycling
across a broad range of temperate and sub-boreal ecosystems. These results offer an
alternative to categorical maps of functional or physiognomic types by providing non-discrete
maps (i.e., on a continuum) of traits that define those functional types. A key contribution of
this work is the ability to assign retrieval uncertainties by pixel, a requirement to enable
assimilation of these data products into ecosystem modeling frameworks to constrain carbon
and nutrient cycling projections.
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regression; spatial mapping; uncertainty.

INTRODUCTION

Terrestrial ecosystems play an important role in the

global carbon cycle by sequestering 3–5 Pg of carbon (C)

per year from the atmosphere via photosynthesis (see

Schimel 1995, Cramer et al. 2001, 2007, Le Quere et al.

2009). Characterization of the factors that influence

terrestrial C uptake is required to develop an improved

process-based understanding of ecosystem dynamics and

accurately model vegetation response to global change.

However, there remains a large uncertainty in the

magnitude, seasonality, and location of this flux

(Friedlingstein et al. 2014).

Chemical, structural, and morphological properties of

the foliage in vegetation canopies correlate strongly with

plant function, including ecosystem-wide nutrient cy-

cling rates (Scott and Binkley 1997, Craine et al. 2002,

Santiago et al. 2004, Meier and Bowman 2008) and

photosynthetic capacity (Reich et al. 1997, 1999, Shipley

et al. 2005, Kergoat et al. 2008). Thus, to map ecosystem

productivity, modeling efforts to estimate the dynamics

of global carbon stocks should make use of ‘‘functional

biogeographic’’ (Violle et al. 2014) information on the

covariance between plant traits and patterns of biogeo-

chemical cycling (Enquist et al. 2007). The use of remote

imaging spectroscopy to map key plant trait patterns—

those that govern carbon and nutrient dynamics—will

greatly enhance our understanding of ecosystem func-

tioning (Ustin and Gamon 2010).
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Global patterns of nutrient cycling and primary

productivity in forested ecosystems are driven, in large

part, by a tractable suite of foliar structural and

biochemical traits representing a trade-off between leaf

construction costs and photosynthetic carbon uptake

potential (Reich et al. 1992, Shipley and Lechowicz

2000, Wright et al. 2004, Shipley et al. 2005, 2006). This

defines a spectrum of plant function from slow-growing,

nutrient-poor species to fast-growing, nutrient-rich,

albeit ‘‘leaky,’’ plants. Specifically, coordination between

foliar nitrogen content and specific leaf area (SLA, or its

reciprocal, leaf mass per area, Marea) maximizes C

fixation (Shipley et al. 2005), with lower SLA resulting

in lower foliage photosynthetic potential per unit dry

mass (Niinemets 2001), but greater leaf structural

strength and consequently longer leaf life spans (Wright

and Westoby 2002, Wright et al. 2005a, Violle et al.

2009). These patterns have been found to be consistent

among broadleaf, needleleaf, and herbaceous species

(Reich et al. 1991, 1992, Grime 2006) and have been

found to operate independently of growth form or

phylogeny (Shipley et al. 2006). Foliar nitrogen content

(i.e., nitrogen on scaled to an area basis, g/m2) scales

with the content of RuBisCo, the key protein respon-

sible for the carboxylation of RuBP in the initial steps of

CO2 fixation (Long 1991, Collatz et al. 1992, Ainsworth

and Rogers 2007). Thus, foliar nitrogen reflects a plant’s

investment in photosynthetic enzymes, structure, and

light-harvesting complexes that modulate photosynthet-

ic parameters such as the maximum rates of carboxyl-

ation (Vcmax) and electron transport (Jmax) (Long 1991,

Ripullone et al. 2003).

Foliar nitrogen concentration and Marea/SLA also

covary strongly with decomposition and nitrogen

mineralization rates across ecosystems (Chapin 2003,

Kazakou et al. 2006, Quested et al. 2007, Santiago

2007). Decomposition releases plant nutrients and drives

the largest flux of terrestrial C to the atmosphere (Meier

and Bowman 2008), and rates of decomposition are

positively correlated with nitrogen content of foliage

and litter, SLA, and leaf water content (Bonan 1993,

Hattenschwiler et al. 2005, Fortunel et al. 2009) and

negatively with leaf dry matter content (Quested et al.

2007, Fortunel et al. 2009, Kazakou et al. 2009) and

foliar lignin concentrations (Hobbie et al. 2007, Johnson

et al. 2007, Carrera and Bertiller 2010). Foliar lignin-to-

nitrogen ratios are thus strong indicators of litter quality

and consistent predictors of litter decomposability

(Melillo et al. 1982, Knorr et al. 2005, Fortunel et al.

2009) and, together with cellulose concentration, regu-

late rates of late-stage forest litter decomposition

(McClaugherty and Berg 1987, Berg 2000, Johnson et

al. 2007).

Foliar isotopic N concentration (d15N) is an integra-

tor of the nitrogen cycle (Robinson 2001, Amundson et

al. 2003) and has been used as an indicator of relative N

availability to plants and a basis to infer N cycling rates

(Austin and Vitousek 1998, Martinelli et al. 1999, Craine

et al. 2009). Specifically, variations in N fractionation in

foliar matter can indicate effects of climate on organic/

inorganic nitrogen availability (Amundson et al. 2003,

Craine et al. 2009) or local-scale variations in plant

dependence on mycorrhizal associations (Hogberg 1997,

Hobbie et al. 2000, Lilleskov et al. 2002, Craine et al.

2009). Spatial patterns of foliar isotopic N concentra-

tions are also associated with plant response to

disturbances (Amundson et al. 2003, McLauchlan et

al. 2007) or elevated external inputs such as N

deposition (Hogberg 1997, Emmett et al. 1998, McLau-

chlan et al. 2007).

Synoptic, repeatable, and consistent retrievals of key

foliar traits such as foliar nitrogen, SLA (or Marea),

foliar lignin and cellulose, and isotopic nitrogen are

invaluable for characterizing determinants of ecosystem

function across large regions (Chapin et al. 1996, Diaz et

al. 2004, Ustin and Gamon 2010), and may provide

valuable inputs for modeling nutrient fluxes and

vegetation range shifts under changing land use and

climate scenarios (Wright et al. 2004, Townsend et al.

2008). Remote sensing, specifically imaging spectrosco-

py, offers the capacity to map the primary drivers of

plant trait variability from the landscape to the global

scale (Ustin and Gamon 2010). Imaging spectrometers

measure reflected light in narrow, contiguous wavebands

(typically �10–15 nm) over a large portion of the

incident solar spectrum (e.g., 350–2500 nm for NASA’s

Airborne Visible/Infrared Imaging Spectrometer, AVI-

RIS; see Vane et al. 1993, Green et al. 1998). It has long

been demonstrated that reflectance spectroscopy is

sensitive to foliar chemistry as well as the structural

and morphological characteristics of plant canopies, and

indeed, this is the basis for standard spectroscopic

approaches to estimate chemistry on dried samples

(Kokaly 2001, Richardson and Reeves 2005, Petisco et

al. 2006) as well as to nondestructively estimate

chemistry or photosynthetic properties of fresh leaves

(Curran et al. 1992, Sims and Gamon 2002, Blackburn

2007, Menesatti et al. 2010). The ability to do this is a

consequence of well-known biochemical absorption

features at different wavelengths (Curran 1989, Curran

et al. 1992, Fourty et al. 1996, Curran et al. 2001) related

to electron transitions and bending and stretching of

chemical bonds (Curran 1989, Fourty et al. 1996).

The ability to retrieve chemistry from remotely sensed

imagery is complicated by a number of factors, including

crown architecture and seasonality, although it is clear

that chemical features related to leaf chlorophyll

(Curran et al. 1992, Yoder and Pettigrewcrosby 1995,

Curran et al. 2001) and water content are clearly

expressed in both narrowband and broadband imagery

(Gates et al. 1965, Tucker 1980, Asner and Vitousek

2005, Sanchez-Azofeifa et al. 2009, Ustin et al. 2012).

The effects of canopy structure on reflectance may

confound the identification of absorption features in

foliage (Knyazikhin et al. 2013), for example, in

wavelengths with high leaf scattering, but there is also
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strong evidence that features identifiable at the leaf level

can be detected in measurements at the canopy level
(Baret et al. 1994). Ultimately, the coordination of traits

at both the leaf and canopy level facilitates using
spectral information to map traits of interest, even if

the biophysical drivers of strong correlations at some
wavelengths have not yet been fully characterized
(Townsend et al. 2003, Ollinger 2011, Ollinger et al.

2013).
An extensive body of literature has demonstrated the

capacity of imaging spectroscopy to map foliar traits
relevant to photosynthesis (Wessman et al. 1989,

Matson et al. 1994, Curran et al. 1997, Martin and
Aber 1997, Coops et al. 2003, Smith et al. 2003,

Townsend et al. 2003, Asner and Martin 2008, Martin
et al. 2008, McNeil et al. 2008, Kokaly et al. 2009). In

particular, spectra in the shortwave infrared (especially
1400–1850 nm and 2000–2400 nm) are critical to

retrieval of parameters related to photosynthesis on
account of strong absorption features related to nitrogen

bonds in proteins that are expressed in those regions
(Fourty et al. 1996). Studies also show that radiative

transfer models (Asner 1998, Asner et al. 2008, 2011a,
Asner and Martin 2008, 2009) can be used in conjunc-

tion with imaging spectroscopy to effectively map foliar
traits. In general, existing efforts have been site specific
(Martin and Aber 1997, Ollinger et al. 2002, Coops et al.

2003, Townsend et al. 2003) and, apart from Martin et
al. (2008), studies that incorporate information from

multiple scenes across multiple locations are rare
(Appendix: Table A1). Here, we report a set of

generalizable spectroscopic calibrations for the determi-
nation of leaf chemical composition (nitrogen, carbon,

and fiber constituents), morphology (leaf mass per area,
Marea), and isotopic composition (d15N) of temperate

and boreal tree species using imaging spectroscopy.
Moreover, by demonstrating techniques to explicitly

propagate uncertainties from the leaf to stand to image
level, we show how our algorithms can be directly

integrated into global change models that require
uncertainty estimates of input parameters.

MATERIALS AND METHODS

Study sites

We established 237 plots across a broad swath of the

Upper Midwest and Northeast USA (Fig. 1). These
plots sampled a range of broadleaf and needleleaf

forests, including 36 dominant species (see Appendix:
Table A2) reported by Serbin et al. (2014). Each plot

consisted of two crossing 60 3 60 m transects, defining
five points at which a metric factor-2 prism was used to

tally trees by species (Townsend et al. 2003). Foliar
biomass by species was estimated from diameter–

biomass relationships in Jenkins et al. (2003), and was
subsequently used to scale foliar trait estimates by
species to the canopy of the entire plot.

We collected foliage from the top, middle, and bottom

of the canopy of the predominant species on each plot

(.5% of relative biomass) using a shotgun, line launcher,

or pole pruner Plot-level values for each trait were

estimated from the relative proportion of foliar biomass

by species on a plot. We measured leaf-level percentage

nitrogen (%N), carbon (%C), fiber (ADF), lignin (ADL),

and cellulose, isotopic 15N:14N ratio (d15N), and leaf

mass per area (Marea), as well as their uncertainties, by

species and by plot from reflectance spectroscopy on

both dry and fresh samples (Serbin et al. 2014). Leaf-

level trait measurements employed chemometric partial

least-squares regression (PLSR) models that link contact

reflectance spectra and measurements made using

standard laboratory techniques. This approach facilitat-

ed estimation of per sample (i.e., per leaf ) uncertainties

of trait estimates. We scaled measurement uncertainty

from leaf-level traits to estimates of canopy traits based

on proportional foliar biomass. Leaf-to-canopy trait

scaling used 1000 replicates drawn from the distributions

of leaf-level estimates and their uncertainties from Serbin

et al. (2014) to generate plot-level trait estimates and

uncertainties. Note that we had trait estimates for

multiple levels of the canopy at each plot, which

facilitated testing the ability to map ‘‘whole-canopy’’

trait characteristics (see Ollinger et al. 2002) vs. top-of-

canopy traits (presumably all that is visible to the

sensor). Using data from Green et al. (2003) on vertical

variation in foliar traits within a canopy profile, we

weighed plot-level estimates according to four different

schemes: (1) top weighted, 90% weight for top-of-canopy

foliage, 9% weight for mid-canopy foliage, and 1%
weight for bottom-canopy foliage; (2) top-to-middle

weighted, 64.5%, 32.3%, and 3.2% weights for top,

middle, and bottom canopy foliage; (3) whole canopy,

40%, 40%, and 20% weights for top, middle, and bottom

canopy foliage; and (4) top only, where only the top-of-

canopy foliage was considered (100% for top-of-canopy).

We report results from top weighted scaling (option 1),

but results and coefficients for the rest of the scaling

options are provided in the Appendix and Supplement).

For each of these options, uncertainty in relative foliar

biomass was incorporated by randomly varying species-

level biomass estimates by 625% in each of the 1000

permutations. The Supplement provides plot locations,

plot-level canopy trait estimates, and associated uncer-

tainties.

Image processing

145 AVIRIS-Classic images were acquired from

NASA’s ER-2 platform during the summers of 2008–

2011 at flight altitudes ranging from 14 000–20 000 m

(pixel sizes of 12–18 m; see Fig. 1). Data were provided

by the Jet Propulsion Laboratory as orthorectified,

calibrated radiance images (Vane et al. 1993, Green et al.

1998), and all images were processed using a common

processing stream to ensure comparability. We atmo-

spherically corrected images using ATREM (TAFKAA

algorithm; Gao et al. 2000, Montes and Gao 2004).

Images were topographically corrected using the mod-
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ified sun-canopy-sensor topographic method (Soenen et

al. 2005) and were BRDF (bidirectional reflectance

distribution function; i.e., cross-track)-corrected using a

quadratic function of the volumetric scattering term of

the Ross-Thick BRDF model (Roujean et al. 1992,

Lucht et al. 2000). Post hoc georectification was

performed on a small number of misaligned images,

with final pixel registration errors , 0.5 pixel across all

scenes. We used 51 images for model development and

the remainder for testing and analysis.

FIG. 1. Locations of field sampling plots (237) overlaid on AVIRIS (NASA’s Airborne Visible/Infrared Imaging Spectrometer)
acquisitions (143) from 2008–2011 across a portion of the United States. Boxes indicate locations of sites graphed in subsequent
figures; A, Porcupine Mountains State Forest, Michigan; B, Ottawa National Forest, Michigan; C, Flambeau River State Forest,
Wisconsin; D, Devil’s Lake State Park, Wisconsin; E, Fernow Experimental Forest, West Virginia; F, Green River State Forest,
Maryland; G, Adirondack Park, New York.
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Statistical analysis

The general approach to the estimation of canopy

traits (including chemistry) from imaging spectroscopy

(IS) is illustrated in Fig. 2. We build upon the approach

taken by Martin et al. (2008), in which they used data

from eight study sites and 137 field plots to develop a

general, cross-scene predictive equation for foliar

nitrogen. We extend their effort by additionally deriving

maps of carbon, leaf mass per area (Marea), fiber, lignin,

and cellulose, as well as mapping uncertainties in all

traits of interest. For each trait, we developed models

using 500 permutations of our data, drawing randomly

from the plot-level trait estimates and perturbing those

estimates based on uncertainties propagated at every

level of measurement (spectra, trait, foliar biomass, etc.).

For each of the 500 permutations, we randomly split our

data 50/50 for calibration and validation. Because

spectra for a given plot could have been sourced from

multiple images available for each location, we further

constrained the selection such that an observation could

appear only once in the training set (i.e., training spectra

for each plot came from a single image). This procedure

was repeated 500 times and model coefficients, model

fits, and predictions were saved for all iterations. We

subsequently applied the 500 models to each pixel in all

images. This allowed us to report the range of expected

model performance and to calculate pixel-by-pixel

uncertainty for the mapped models as the standard

deviation of model predictions for all 500 permutations.

To test if our models were stable across space and time,

FIG. 2. Scaling leaf-level functional traits to the canopy using AVIRIS imagery. Abbreviations are: PLSR, partial least squares
regression; BRDF, bidirectional reflectance distribution function. In the wavelength graph, the PLS b coefficient represents the
standardized coefficient.
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we conducted additional cross-validations by reformu-

lating PLSR models by leaving out data from individual

geographic locations (areas with groups of plots; Fig. 1),

or from years of image acquisition and evaluating model

fits on the withheld data.

We employed partial least-squares regression, PLSR

(Wold et al. 1984, Geladi and Kowalski 1986, Wolter et

al. 2008), to predict canopy traits from imaging

spectroscopy, as done in many previous studies (Coops

et al. 2003, Smith et al. 2003, Townsend et al. 2003,

Martin et al. 2008, McNeil et al. 2008, Deel et al. 2012).

In practice, PLSR iteratively transforms predictor and

response variables to find latent vectors and subsequently

produce calibration factors and a linear model. PLS

techniques achieve computational efficiency by maximiz-

ing the covariance between independent and dependent

variables while simultaneously maintaining the constraint

of being orthogonal to the previously determined factors

(Wold et al. 1984, Geladi and Kowalski 1986, Frank and

Friedman 1993, Wold et al. 2001). PLSR is better suited

than traditional multiple linear regression methods for

handling multi-collinear and over-sampled data, i.e.,

when the number of independent variables approaches

or exceeds the number of observations (Wold et al. 1984,

2001, Geladi and Kowalski 1986). In particular, varia-

tions of unconstrained linear models (such as stepwise

variable selection approaches; see Appendix: Table A1),

violate cardinal assumptions of independent predictors

and uncorrelated errors. At best, this results in biased

estimates of beta coefficients (Tibshirani 1996) and

underestimated errors and P values (Altman and

Andersen 1989). Specific to chemometric data, stepwise

selection procedures have been shown to perform poorly

in calibration experiments (see Grossman et al. 1996) and

may not generate results based on known absorption

characteristics of materials being examined (Townsend et

al. 2003). PLSR avoids difficulties in interpretation of

synthetic PCA variables or the potential for modeling

spurious relationships using stepwise regression (Gross-

manetal.1996). The Predicted REsidual Sum of Squares

(PRESS) statistic was used to select the appropriate

number of PLS model components (Chen et al. 2004). We

used the Variable Importance of Projection (VIP) statistic

(Wold 1994) and standardized coefficient, by waveband,

to evaluate the contribution of each wavelength and

associated absorption features to trait predictions. The
VIP score reflects each predictor’s (i.e., waveband)

influence in fitting the PLSR model. It is based on the
predictor’s absolute coefficient size and partial R2 within

the overall PLSR model. Standardized coefficients are
employed for graphing to account for scale differences in

reflectance between different wavelength regions (i.e.,
higher reflectance and greater variability in the NIR

equate to smaller coefficients, but not necessarily less
important coefficients), as well as in the dependent
variables (traits).

We averaged the 3 3 3 image pixel array surrounding
each field plot’s center, leaving us with one composite

AVIRIS spectrum per 603 60 m plot. We postulate that
averaging surrounding pixels is desirable because field

plots in closed-canopy forests can rarely be identified to
a specific pixel.

Finally, maps of the traits and their uncertainties were
made for all AVIRIS images as the mean and standard

deviation of the 500 permutations. Geographic patterns
of trait distribution were analyzed with respect to

gradients of latitude, precipitation, and temperature
(derived from PRISM 2004), and nitrogen deposition

(from NADP 2014).

RESULTS

Geographic variation in foliar traits

Canopy-averaged ranges of plot-level trait estimates
stratified by leaf physiognomy are presented in Table 1

(data on plot-level foliar traits by species are in the
Appendix: Table A2; the entire data set is in the

Supplement). There was a nearly twofold difference in
Marea between needleleaf and broadleaf species (T ¼
28.88, P , 0.0001), and mass-based nitrogen content of

broadleaf species was around 1.5 times that of needleleaf
species (T ¼ 24.15, P , 0.0001). Carbon content, fiber,

lignin, and cellulose exhibited less variation between
needleleaf and broadleaf species, but all differences were

significant (P , 0.0001). Deciduous-dominated plots
showed slightly higher isotopic N content than conifer-

ous-dominated plots (T ¼ 2.32, P ¼ 0.02). Correlation
analyses revealed a strong negative relationship between

leaf nitrogen and Marea (r¼�0.766, P , 0.0001) as well

TABLE 1. Summary statistics for canopy-level nutritional and morphological traits examined in this study, with means, standard
deviations, and ranges of canopy foliar traits aggregated across 237 plots sampled from 2008–2011.

Trait

Overall Needleleaf Broadleaf

Mean (SD) Range Mean (SD) Range Mean (SD) Range

Marea (g/m
2) 116.23 (44.81) 51.88–313.44 168.33 (29.00) 101.24–313.44 86.90 (16.47) 51.88–151.55

N (%) 2.20 (0.58) 0.96–3.31 1.60 (0.30) 0.96–2.48 2.54 (0.39) 1.20–3.31
C (%) 49.83 (1.14) 46.39–53.86 50.76 (0.77) 48.70–53.86 49.31 (0.97) 46.39–51.83
ADF (%) 37.49 (7.27) 18.02–53.04 44.48 (4.53) 35.10–53.04 33.55 (5.29) 18.02–48.31
ADL (%) 21.95 (4.72) 8.27–36.76 26.16 (2.71) 20.22–8.27 19.58 (3.88) 8.27–30.34
Cellulose (%) 16.06 (2.69) 8.66–23.42 17.92 (2.33) 11.60–23.42 15.02 (2.29) 8.66–22.22
d15N (%) �3.09 (1.68) �7.98 to 0.41 �2.55 (1.97) �7.75 to 0.41 �3.39 (1.41) �7.98 to �0.53

Notes: Sampled plots across a large portion of the USA are shown in Fig. 1. Trait abbreviations are Marea, leaf mass per area;
ADF, acid detergent fiber; ADL, acid detergent lignin. For leaf-level summaries, see Serbin et al. (2014).
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as significant negative relationships with other leaf

structural compounds (Table 2). Leaf nitrogen content

decreased with latitude, while Marea increased, a

reflection of an increasing dominance of needleleaf

species in the north. We also found a significant positive

correlation between foliar nitrogen and patterns of

nitrogen deposition across our sites (r ¼ 0.392, P ,

0.0001). To further explore this relationship, we fit a

mixed-effects model to predict foliar nitrogen concen-

trations while controlling for latitude with Gaussian

random effects specified for species (not shown). The

model explained 88.7% of the variation in foliar

nitrogen, of which 59% was attributed to differences

between species alone. The effects of elevated foliar

nitrogen concentrations corresponding to the N depo-

sition gradient were apparent (P , 0.0001), even after

taking into consideration latitudinal gradients and

inherent differences between species. Foliar d15N con-

centrations were highly correlated with mean annual

temperature and declined with mean annual precipita-

tion (MAT, r ¼ 0.413; MAP, r ¼ �0.455; both P ,

0.0001). We also found evidence of foliar isotopic N

enrichment along the N deposition gradient (r¼0.398, P

, 0.0001).

Canopy spectra

Canopy spectra were highly variable (Fig. 3), with

nearly complete separation (6 1 SD) between spectra of

all broadleaf and all needleleaf plots in the NIR (700–

1400 nm) and the 1400–1900 nm SWIR1 regions.

Spectra of the two physiognomic types partially

overlapped in the visible (400–700 nm) and SWIR2

(1900–2400 nm) wavelengths. The highest spectral

variability (in terms of the coefficient of variation; data

TABLE 2. Pearson product moment correlation coefficients (r) between plot-level traits, latitude, mean annual precipitation (MAP),
mean annual temperature (MAT), latitude (Lat.), and NADP total annual N deposition (N dep.).

Trait N Marea C ADF ADL Cellulose d15N Lat. MAT MAP

Marea �0.766
****

C �0.618 0.607
**** ****

ADF �0.624 0.700 0.623
**** ***** ****

ADL �0.492 0.649 0.628 0.931
**** **** **** ****

Cellulose �0.476 0.501 0.386 0.865 0.746
**** **** **** **** ****

d15N 0.108 0.211 0.005 �0.058 0.119 �0.226
** **

Lat. �0.312 0.307 0.106 0.170 0.119 0.237 �0.177
**** **** ** ** **

MAT 0.414 �0.238 �0.219 �0.260 �0.172 �0.282 0.413 �0.862
**** ** ** **** ** **** **** ****

MAP �0.135 �0.193 0.203 0.163 0.087 0.088 �0.455 �0.352 �0.134
* ** ** ** **** **** *

N dep. 0.392 �0.066 �0.278 �0.165 �0.121 �0.146 0.398 0.021 0.205 �402
**** **** ** * **** ** ****

Note: The NADP data source is http://nadp.sws.uiuc.edu/
* P , 0.05; ** P , 0.01; **** P , 0.0001.

FIG. 3. Means (with standard deviation
bands) of AVIRIS spectra obtained from 51
images and 237 plots stratified by dominant leaf
habit (deciduous, needleleaf ).
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not shown) was observed in the visible regions of the

spectrum (.23–50%) and was generally constant across

the rest of the spectrum (;22%). Across all plots,

needleleaf-dominated plots had ;10% less spectral

variability than plots dominated by broadleaf species.

PLSR model results

Results for models built using the four aggregation

schemes (Appendix: Table A3) were highly consistent.

We provide model comparisons (Appendix: Figs. A1–

A5) and PLSR coefficients from all canopy aggregation

schemes and randomized models (Supplement), but

focus here on results obtained using the top-weighted

scheme. In our results, we show the model predictions

from AVIRIS vs. field-based measurements (Fig. 4).

Note that we show error bars in both directions: error

on the y-axis is due to uncertainty of trait values from

the scaling from leaf-level spectra to plot-level traits,

whereas uncertainty on the X-axis is due to uncertainty

from the image-based PLSR model. To our knowledge,

this is the first time both uncertainties in the training

data and mapped estimates have been provided. We also

show standardized coefficients (Fig. 5), to compare

wavebands important for mapping different traits. The

shaded uncertainties in the standardized coefficients are

based on the 500 permutations of the data used to

generate the final maps. Additional diagnostics, such as

VIP by wavelength and PRESS statistic by number of

PLS coefficients (used to select the number coefficients

in the PLS model), are graphed in Fig. 6. The

Supplement lists the 500 raw PLS coefficients for the

traits reported in this paper. These are the values that

should be applied to make maps from new images that

have been processed consistent with this study. We also

show wavelength regions that correspond to known

absorption features (from Curran 1989, Fourty et al.

1996, Curran et al. 2001). The standardized coefficients

for mapping all of the traits from AVIRIS-Classic

(except isotopic N, which has not previously been

studied in depth) align in at least some wavelengths

with known absorption features (Fig. 5; dotted bars).

Both Marea and %N had model fits with R2 . 0.85,

which are comparabe to the results reported by Martin

et al. (2008); see Appendix: Table A2). Root mean

square errors (RMSEs) for both variables were less than

9% of the range of data (Table 3). There was

considerable spatial variation in retrieval uncertainties

for both traits. High uncertainties (e.g., .2% for

nitrogen or .10% for Marea) typically occurred at forest

edges, in regions that were probably disturbed and

where the dominant species were not represented in our

database (e.g., crops or grasses and forbs in recently

disturbed areas.). Fiber and lignin were predicted with

R2 . 0.60, and carbon and cellulose with R2 ; 0.5.

Although R2 values of fiber and lignin were lower than

those of Marea and %N, their RMSE values were within

10% of the range of data. The comparatively lower R2

values for %C and cellulose are related to the low

amount of natural variability in these constituents.

Isotopic d15N had the worst fit of all models (R2¼ 0.48),

but the RMSE was within 15% of the range in the data.

Cross-validations conducted to test model stability

across years and sites were in agreement with overall

model results. Averaged across all strata (by year or by

geographic area) and traits, more than 90% of held-out

samples were predicted within the prediction error

bounds of calibration models. In addition, validation

errors of prediction (RMSEs) were well within the

observed range of modeled traits, i.e., with RMSE

values lower than 15% of the range of variation in the

trait (and usually with %RMSE , 10%; complete results

are in the Supplement).

Mapping and application

We used the PLSR-derived coefficients (Supplement)

to generate spatially explicit maps of traits and

respective uncertainties. We show a subset from one of

the many scenes used in this study (Green Ridge State

Forest, Maryland, USA; Fig. 7).With these maps, we

synthesized spatial patterns in foliar traits into images of

functional variation using false color composites of key

foliar traits such as nitrogen, lignin, and leaf mass per

area (Appendix: Fig. A6). Such maps illustrate gradients

of canopy biochemical and morphological traits that are

likely to be related to species associations and provide

greater detail than traditional land cover maps. The trait

maps expose patterns of plant investment in foliar

nutrients vs. structural compounds across environmen-

tal gradients on the landscape. Comparison of trait

maps among regions reveals variability in relative

abundance of traits inferred from, but not captured

by, land cover classifications (Appendix: Fig. A6). Maps

of functional traits from a single hyperspectral image

can reveal differences in species associations across

gradients that are otherwise only apparent in multi-date

imagery (Appendix: Fig. A7), and, moreover, can help

to identify ecosystem-level consequences of disturbance

events through changes in functional traits and mapped

uncertainty (Appendix: Fig. A8).

DISCUSSION

In this study we confirm the capacity of imaging

spectroscopy to accurately and repeatedly map foliar

traits important for describing landscape patterns in

nutrient cycling (e.g., Chapin 2003, Kazakou et al. 2006,

Quested et al. 2007, Santiago 2007) and photosynthetic

capacity (e.g., Kattge et al. 2009).The approach was

robust across multiple traits, using data from numerous

sites, vegetation types, and years. Our method for

estimating canopy chemistry integrated three scales of

observation—leaf spectra, plot structure, and image

spectra—thus allowing the propagation of uncertainty

from the leaf-level dependent variables to the plot and

canopy levels, and finally to maps created from image

spectra. Although imaging spectroscopy has been used

in several studies to map foliar traits (Wessman et al.
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1989, Curran et al. 1997, Serrano et al. 2002, Townsend

et al. 2003, Huber et al. 2008, Martin et al. 2008), ours

demonstrates the capacity to map multiple functional

traits across a diversity of sites, years, images, and

geographic complexity, as well as to explicitly account

for the propagation of measurement, scaling, and

modeling uncertainty through to the end product.

The per trait waveband calibration coefficients

provide a basis for physiological interpretation of the

results as well as the assessment of the results’ generality

FIG. 4. PLSR model fits using AVIRIS-derived spectra fitted to foliar traits scaled from leaves to the canopy. Model
performance was evaluated by averaging 500 randomized models built with a 50/50 calibration/validation split. Horizontal bars
indicate uncertainty (1 SD) in predictions; vertical bars indicate uncertainty (1 SD) in plot-level estimates propagated from leaf-
level measurements. The shading scheme of dots indicates increasing relative biomass of needleleaf foliage (white to black).
Abbreviations are: Marea, leaf mass per area; %ADF, acid detergent fiber; %ADL, acid detergent lignin; RMSE, root mean square
error.
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for mapping to other data sets. The important wave-

bands align with fresh-leaf results for Marea and dry-

sample results for chemical constituents reported by

Serbin et al. (2012, 2014), as well as with wavebands

indicated by Martin et al. (2008) as important for foliar

nitrogen from AVIRIS (Fig. 5). In comparison with

leaf-level results, standardized coefficients matched

across most of the spectrum, but there was a reversal

of sign in coefficients across the red edge (500–700 nm).

Leaf-level NIR reflectance results from scattering at the

interface between cell walls and intercellular air spaces,

whereas canopy (i.e., image) reflectance is strongly

dominated by canopy structural properties such as leaf

clumping, angle, and density (Jacquemoud et al. 2009,

Sullivan et al. 2013). For instance, leaf-level NIR

reflectance generally increases with thickness of needle

leaves (Ehleringer and Mooney 1978, Lin and Ehleringer

1983, DeLucia et al. 1996, Slaton et al. 2001), but

FIG. 5. Standardized PLSR coefficients indicating the magnitude and direction of influence of each wavelength (with 6 1 SD
bands in gray). Note that raw coefficients are applied to image spectra to derive spatial predictions. Short vertical gray bars are
absorption features at wavelengths known from previous studies. Dashed gray curves indicate standardized coefficients from Serbin
et al. (2014); the white-filled line in the %N panel represents coefficients from Martin et al. (2008).
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canopy-level NIR reflectance decreases with greater

abundance of needleleaf species because absorption-

inducing canopy properties (e.g., greater needle clump-

ing) overwhelm leaf traits in affecting NIR canopy

reflectance (Ollinger 2011, Sullivan et al. 2013). Consid-

ering recent critiques of imaging spectroscopy-based

trait mapping (Knyazikhin et al. 2013), this switch in the

direction of NIR coefficients between leaf and canopy-

level models of Marea provides added confidence that

imaging spectroscopy captures sufficient information

about the canopy and constituent foliage for purposes of

mapping (Ollinger et al. 2013, Townsend et al. 2013).

Moreover, the striking similarity of results obtained

from the four schemes to scale canopy-height-related

differences in measured leaf traits (Appendix A) further

supports recent work emphasizing the mass basis for

measuring variability in the global leaf economics

spectrum (Niinemets et al. 2014), and again underscores

FIG. 6. (A) Profile of the PRESS (predicted residual sum of squares) statistic (with 6 1 SD bars) obtained by fitting 500
randomized models, each using an increasing number of PLS components (h, on the x-axis). The final model was fit using the
components that minimized the PRESS statistic. (B) Profile of the VIP (variable importance of prediction) statistic with 6 1 SD
gray bands. The VIP describes the relative importance of each wavelength in predicting the quantity of interest, and is considered
significant where VIP . 0.8 (dotted line).
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the robust ability of imaging spectroscopy to map

spatial patterns from canopy-scale measurements.

We compared coefficients obtained from our analysis

of %N with those published by Martin et al. (2008), the

only other study using comparable multi-scene and

multi-location data. Loadings of standardized coeffi-

cients for our models generally agreed with the Martin et

al. models (2008); see Fig. 5. Discrepancies in locations

of dips and spikes in coefficients result primarily from

our use of a standardized data set (i.e., centered and

scaled) compared to raw coefficients from Martin et al.

(2008). Martin et al. (2008) employed 11 images (5

AVIRIS, 6 Hyperion) covering a wide variety of

temperate and tropical forest ecosystems in North

America and Australia; theirs was the first study to

show the potential for building general models to map

foliar traits across large regions.

While not as global in scope as Martin et al. (2008),

our analysis incorporates multiple forest types dominat-

ed by a range of broadleaf and conifer species

(Appendix: Table A2; Supplement; see Serbin et al.

2014), and covers the breadth of forest functional

variability within North American eastern temperate

forests. Any missing species and forest types probably

are bracketed by the range of our data, and we expect

that spatial patterns of uncertainties (e.g., Fig. 7) are

indicative of gaps in our database for different forest

optical types (sensu Ustin and Gamon 2010) rather than

weaknesses in model performance. The largest uncer-

tainties were observed in locations where (1) the

vegetation was not represented in our database of foliar

traits due to our focus on forests (i.e., grasses, forbs,

crops, wetlands); (2) there were strong terrain effects in

the imagery not fully accounted for in the topographic

normalization; or (3) along forest edges and disturbed

areas. In particular, the uncertainty mapping helped to

identify areas that had been recently disturbed (Appen-

dix: Fig A8). Logged areas showed a consistent pattern

of higher lignin and Marea and lower foliar nitrogen

content (and also higher d15N, indicating increased N

availability) compared to adjacent undisturbed areas.

Although such patterns are not unexpected, those areas

also had consistently high uncertainties due to optical

properties of disturbances being on the edge of the range

of variability of optical properties for the intact forests

we sampled. Future analysis of vegetation traits in

disturbed areas using imaging spectroscopy may provide

the opportunity to better understand changes in

ecosystem dynamics brought about by human or natural

perturbations.

Composite maps of functional traits (e.g., Appendix:

Fig A6) revealed a greater amount of variability in

forest canopies than apparent in individual maps, and in

particular, land cover classifications. For example, in the

Central Appalachian sites, codominant conifers in ridges

and valleys were revealed by the higher lignin content

and Marea of conifers (Fig.7). Comparisons between

maps of individual traits (Fig. 7) also revealed gradients

in functional traits that follow the inverse relationship

between investments in leaf structural mass in contrast

to leaf nutrients (Wright and Westoby 2002, Reich et al.

2003, Wright et al. 2004). Regions showing higher foliar

nitrogen concentrations were associated with lower

values of Marea and vice versa. Although this is widely

known from multiple species inhabiting diverse ecosys-

tems (Reich et al. 1998, 1999, Wright et al. 2001,

Sanchez-Azofeifa et al. 2009, Asner et al. 2011b),

imaging spectroscopy allowed these associations to be

mapped explicitly and across multiple ecoregions.

The geographic patterns in trait variability matched

expectations associated with climate and other environ-

mental drivers (Table 2). For example, the negative

correlation between Marea and leaf nitrogen is in

agreement with the broader concept of the leaf economic

TABLE 3. Summary of PLSR (partial least squares regression) models built using AVIRIS spectra and foliar traits scaled to the
plot level.

Trait

Traits Model Calibration Validation Model-averaged

Mean (SD) Range N Train% h R2 RMSE R2 RMSE R2 RMSE

Marea 107.28 51.88–224.53 202 28.82 10 0.92 12.68 0.81 18.20 0.88 15.039
(43.09) (0.016) (1.177) (0.027) (1.273)

%N 2.21 0.96–3.31 212 29.94 10 0.90 0.19 0.77 0.26 0.85 0.218
(0.56) (0.019) (0.016) (0.028) (0.015)

%C 49.68 46.94–51.73 208 29.47 10 0.67 0.55 0.44 0.69 0.63 0.568
(0.93) (0.054) (0.049) (0.068) (0.049)

%ADF 36.78 23.15–53.01 214 30.07 10 0.77 3.56 0.49 4.89 0.68 4.005
(7.10) (0.041) (0.317) (0.062) (0.299)

%ADL 20.99 10.53–30.57 211 29.50 12 0.86 1.80 0.52 3.16 0.74 2.343
(4.66) (0.033) (0.198) (0.064) (0.209)

%Cellulose 16.39 10.26–22.54 213 29.67 9 0.63 1.66 0.27 2.10 0.49 1.781
(2.50) (0.059) (0.151) (0.062) (0.104)

d15N �3.53 �6.90 to �0.74 190 28.30 8 0.59 0.89 0.29 1.14 0.48 0.954
(1.33) (0.066) (0.087) (0.059) (0.062)

Notes:Means of coefficients of determination (R2) and associated root mean squared error (RMSE) statistics of 500 randomized
models are presented along with associated uncertainty estimates (SD). Model-averaged fits indicate the accuracies obtained at the
image level after averaging predictions from 500 models. Train% is the fraction of data used for model calibration; h is the number
of components used to build PLSR models.
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spectrum (Wright et al. 2004, 2005a, b). The positive

correlation of foliar N with regional-scale N deposition

corroborates evidence of foliar N enrichment reported in

numerous studies in northeastern forests (McNeil et al.

2007, 2012, Davis et al. 2009, Crowley et al. 2012).

Correlations of foliar d15N concentrations with mean

annual temperature (positive) and precipitation (nega-

tive) agree with results in Amundson et al. (2003),

Craine et al. (2009), and Serbin et al. (2014). Mapped

evidence of increased isotopic N along the N deposition

gradient corroborates Emmett et al. (1998) and Mc-

Lauchlan et al. (2007), showing that greater N

availability yields less preferential retention of lighter
14N in the soil system.

It has been recently demonstrated that estimates of

canopy structure and composition obtained from

imaging spectroscopy are invaluable in constraining

regional carbon flux models (Antonarakis et al. 2014).

Maps of foliar traits obtained from this study can be

leveraged to drive ecosystem process models requiring

parameterization of foliar nitrogen content and leaf

mass per area, which are coordinated in leaves to

maximize carbon fixation (Shipley et al. 2005) in

patterns independent of species-level physiognomy

(Reich et al. 1991, 1992, Grime 2006).This offers the

potential to develop data sets needed to drive spatially

explicit ecosystem process models at large scales from

proposed forthcoming satellites(e.g., HyspIRI, EnMAP:

see Stuffler et al. 2007, Middleton et al. 2013). Although

spatial patterns of canopy foliar N, lignin, and Marea are

largely interpretable in terms of species associations,

patterns of d15N will require considerable follow-up field

FIG. 7. Spatial predictions ofMarea, %N, %C, d15N, %Cellulose, %ADL, and %ADF means (left panels) and uncertainties, i.e.,
standard deviations (right panels), obtained by applying 500 sets of coefficients obtained from randomized PLSR models to
AVIRIS imagery acquired over the Green Ridge State Forest, Maryland (Fig. 1, box F). Each model was built with a 50/50
calibration/validation split. See Table 3 for model statistics and the Supplement for raw PLSR coefficients.
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research. In locations where d15N concentrations appear

elevated without associated increased uncertainties or

changes in foliar N and or Marea (indicating an obvious

change in plant functional associations), localized

patterns of d15N enrichment (for e.g., see Fig. 7, SE

corner in d15N map) could be an indicator of elevated N

availability via ephemeral disturbances such as insect

defoliation or logging. The availability of spatial

predictions of foliar traits may therefore open up new

investigations into biotic or abiotic nutrient cycling

controls across both small regions and large landscapes.

Imaging spectroscopy offers the opportunity for

applications ranging from assessment of biochemical

effects of invasive species (Glenn et al. 2005, Asner et al.

2008, He et al. 2011), to characterizing photosynthetic

down-regulation (Gamon et al. 1990, 1992, 1997) and

measurement of the inductance of plant defense to

perturbations (Couture et al. 2013). By directly measur-

ing the chemical and physiological consequences of

disturbances and other environmental drivers on vege-

tation, space-borne imaging spectroscopy should pro-

vide the ability to directly quantify the consequences of

environmental change rather than inferring it from land

cover maps or vegetation indices. This will provide

agencies the tools to measure impacts of invasions or

help to better guide management activities.

CONCLUSIONS

Using data from a wide range of forest ecosystems, we

rigorously tested the capacity of imaging spectroscopy

to map multiple forest functional traits. The resulting

maps enable us to describe fundamental axes of

variability in plant physiology along a spectrum ranging

from ‘‘fast’’ (high nutrients and low lignin, thin, low

Marea leaves) to ‘‘slow’’ patterns of forest nutrient

cycling (Reich et al. 1991, 1992, 1999, Craine et al.

2002, Wright et al. 2005a, b, Sanchez-Azofeifa et al.

2009). It is exciting to begin answering questions on the

spatial patterns in these traits, but ultimately, trait

mapping from imaging spectroscopy is likely to have its

greatest impact by enabling researchers to pose more

applied questions. For example: how does functional

biogeography (Violle et al. 2014) mediate ecosystem

response to environmental change? By helping to answer

such questions, multiple-trait mapping, coupled with

robust assessments of its uncertainty, opens up the

potential for making defensible, tractable, and scalable

predictions of the delivery of key ecosystem services

from complex forest environments that are increasingly

subjected to multiple agents of global environmental

change.

Our work accomplishes two objectives: we provide a

set of equations (Supplement) that can be used with

imaging spectroscopy data to maps traits in similar

environments (temperate forests). As well, we outline a

workflow that could be implemented in other ecosystem

types. An important next step for trait mapping is the

integration of data collected from across the globe

(Asner and Martin 2009, Asner et al. 2012). This

integration will further determine the extent of the

generality of these methods, with respect to sensor types,

measurement or analytical strategies, and environmental

variability. Coupled with other studies, this research

represents a step toward the development of global

approaches to mapping plant functional properties from

imaging spectroscopy, and thus helps to provide a more

solid foundation for the development of ‘‘trait’’ products

from the proposed HyspIRI mission and NEON’s

Aerial Observatory Platform (Kampe et al. 2010,

Middleton et al. 2013, Sims et al. 2013).
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